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S U M M A R Y  
A wave mechanical description of the electron beam in a mirror electron microscope is given. First the Schr6dinger 
equation of the electron beam is set up, from which the wave function is obtained. Then the probability current density 
is derived, which turns out to be a useful expression to clarify the formation of the image on the screen. 

INTRODUCTION 

This article contains a wave mechanical description of the electron beam in a mirror electron 
microscope. The tackling procedure is first to set up the Schr6dinger equation of the electron 
beam, then to look for the wave function that satisfies it, and afterwards to derive the probability 
current density which turns out to be a useful expression to clarify the formation of the image 
on the screen. Applying this procedure at first to the case of a microscope without specimen, 
the unperturbed path of the electrons is found. 

When the influence of the specimen, expressed by a small perturbation term in Schr6dinger's 
equation, is taken into account, the approach becomes much more difficult. Application of a 
perturbation method, which is more or less obvious in this case, does not lead to an entirely 
satisfactory solution; by means of the W.K.B. method and Langer's method together, the 
problem can be solved in a better way. Finally the validity of the solutions obtained is discussed 
in appendix A. 

Airy functions which are used freely in this article, are dealt with briefly in appendix B. 

1. Principle of the Mirror Electron Microscope 

Contrary to most of the other electron microscopes, the mirror electron microscope, [2], has 
a reflecting electron beam. It arrives monoenergetically and paraIM at the retarding field of an 
electrostatic mirror, is slowed down, and then reverses. The specimen surface, which is chosen 
to be the negative mirror electrode, has been given a slightly more negative electric potential 
then the energy of the incident beam, which causes the electrons to reverse very near the speci- 
men surface, but without actually touching it. Consequently the surface is protected against 
damage as a result of electron bombardment. (See fig. 1) 

Near the plane of reversal, the electron beam is highly sensitive to perturbations disturbing 
the flatness of the reflecting equipotential plane. These perturbations may be caused by elec- 
trostatic or topographic irregularities on the specimen surface, because this is positioned at a 
very short distance from the plane of reflection. So the reversing beam carries information 
concerning the specimen surface in the form of a small perturbation. The information can be 
made visible by projecting the beam onto a screen, whereas the contrast of the image can be 
provided by placing an aperture in the reversing beam. 
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Figure 1. Electron trajectories in the mirror electron microscope. 

2. The Microscope without Specimen 

The unperturbed model consists of a parallel beam of electrons of kinetic energy E, running in 
the direction of positive x, being slowed down by a homogeneous electrostatic retarding field. 
Reflection takes place in the plane x = a, whereas the specimen surface is located at x = b. All 
electrons travel to and fro along the same axial trajectories, so that the problem is considered 
to be one-dimensional. In our configuration, four regions are distinguished : (see fig. 2) 
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Figure 2. Potential energy in the different regions. 
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region I : electron beam of constant energy E (x < 0) 
region II : retarding field before point of reversal (0 < x < a) 
region III- retarding field beyond point of reversal (a < x < b) , 
region IV : specimen (x > b) 

In all regions the electron beam may be characterised by the wave function if, satisfying 
Schr6dinger's time independent equation for one electron, [5], [6] : 

d 2 ~ 2m 
dx 2 + ? ?  { E -  = 0 .  

where m = electron rest mass, 
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h = h/2~, h = Planck constant, 
U(x) = potential energy of retarding field. 

In region I, where U(x)= O, we find immediately 

0 t = C1 exp(iax)+ C2 exp(- io-x) ,  

a = (2mE)~/h m e a ~ g  the wave number of the electron waves. 
In the regions II and III, the potential energy in the homogeneous retarding field is a function, 

linear in x, and equalling the original kinetic energy E in the point of reversal x = a 

E v(x) = - x, a 

so that the Schr6dinger equation becomes 

dx ~ + o-2 a x ~ u n = O .  

Substitution of 

leads to the differential equation 
d2 ~tn,ln 

_ _  ~q,  l u .  0 d~2 = , 

known under the name of Airy equation, whose solutions Ai(~) and Bi({) are called Airy 
functions of the first and second kind (see appendix). Both of them show an,]scillatory behaviour 
for ~ < 0 (region II), but for ~ > 0 (region III) Ai(~) decreases while Bi(~) inc teases exponentially. 
Taking the physical circumstances into account, we must conclude therefl)re that Bi(~) cannot 
be used here, and that 

ffjii,lli = C3 ai(~) (1) 

is the complete solution in region II and III. For large negative values of 3, th is may be approxi- 
mated by the asymptotic representation 

4,H= --~ I~1 -+ cos I~[ ~ -  

or, after having separated incident and returning wave, 

Oi , Ca {exp(2i[~[ ~ ~ - ) + e x p  (-~l[~1~+ 4 ) }  = 2x -~-- i~l_ ~ _ 7ri - 2- -~ . 

Replacing x for ~, we obtain the incident wave 

(o-a) ~ [ - - I  exp a - x  ~ zi  (2) 
z~c ~ \ a - x /  

and the returning wave 

2n ~ (o-a)- ~ ~ 2. / a -  x V 
= _  exp  , atT ) - . 

The constant C3 can be expressed in C1, by requiring ~/to be continuous while crossing from 
region I to II. In x = 0 holds 

'/"+ = G 

c~ _~ ( ~i) 
I//II = --2rC~ (o-a) ~ exp -~io-a + ~ , 
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so that 

C3 = C1 2rc~-(aa) ~- exp iaa - 

fulfills the boundary requirements, changes (2) into 

0 ~ = C 1 (  a--~-]~expl-2iaa{(~-)~-a-x/ 1}] ,  

(4) 

(5) 

and (3) into 

I ~ =  l ( a ~ - s  { 1} ] . exp  ( - 2 ) "  (6) 

In a similar way the returning beams in region I and II are connected. Here the boundary 
condition 

C 2 = C  xexp 4iaa-  

yields 

0 I= C 1 exp(iax)+C1 exp { - ia (x -4a)}  exp - ~- 

as a final expression for region I. 
The wave functions (5) and (6) hold for large negative values of 4, and since 

2 

4 =  a (x-a) ,  

we may conclude that they lose validity at an extremely small distance from the reversal point, 
i.e. for a -  x sufficiently small. In this small region another expansion of Ai(~) may be applied, 
namely its Taylor series for small values of the argument. However this does not provide very 
important results, so that we confine ourselves to giving the first term of the series 

3-3 
0(0) = C3 Ai(O) = C3 F(-}) 

referring to the appendix for higher order terms. 
In region III, beyond the small region where Taylor's series can be used, an expansion for 

large positive values of ~ is applicable to the Airy function. Using the same expression (4) for 
C3, we find thus 

OlII = C 1 exp - 2 a a  exp iaa - -4- 

which decreases rapidly away from the reversal point, because a is very large. 
The same exponentially decreasing behaviour is observed in region IV, and therefore it is 

not of much interest here. 

3. The Microscope with Specimen 

Up to now we examined only the microscope itself and the relatively simple wave function of 
its unperturbed electron field. If we place a specimen in it now, putting its surface in the trans- 
versal plane x = b, the small irregularities with regard to flatness or electrical charge distribution 
of the surface will bring about a perturbation in the electron field. This perturbation casuses 
tangential impulses to the electrons, which makes the problem three dimensional. However we 
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consider only an axial plane, containing an x coordinate in the running direction of the elec- 
trons, and an y coordinate in tangential direction. Extension to the third dimension would not 
make the problem essentially different, only more confusing. 

Our purpose in this chapter is to find the wave functions in the perturbed electron field. 

1. Schrfdinger's Equation in the Perturbed Field 
The 2-dimensional time independent Schr6dinger equation, [5], [6] : 

2m { E -  U(x, y)}O = 0 (7) 
AO + - U 

contains the potential energy term U(x, y), now including a perturbation. Decomposing this 
term into the Fourier series 

U(x, y) = Uo(x)+ U~(x) cos ky+ U2(x ) cos 2ky+ U3(x) cos 3ky+ . . . ,  

we can identify Uo(x) at once with the retarding potential, having the following values in the 
different regions : 

u I (x)  = 0 

E 
a 

= E b .  
a 

The sum of the Fourier series has to satisfy the Laplace field equation, and all the separated 
terms of it must do so as well, since the equation is homogeneous. Uo(x) clearly satisfies it; 
U1 (x) only if 

A U1 (x) cos ky -- O, or 

d 2 U 1 (x) k 2 U1 (x) = 0 
dx 2 

which leads to 

U1 (x) = c e k~ 

(solution c e-kx is not in accordance with the physical requirement for U1 (x) to decrease for 
decreasing x). The point x = b, y = 0 on the specimen surface, where we assume the perturbation 
amplitude of the first order harmonic to be B1, enables us to find the constant c from 

ce kb= B1 �9 

So the second term of the Fourier series yields 

B1 e k(~-b) cos ky. 

Similarly the n th term is found to be 

B n e "k(x-b) c o s  nky .  (8) 

We must assume now that Z,~= lIB,] ~ E in order to keep the perturbation energy small in 
comparison with the kinetic energy of the incident beam. 

Insertion of (8) into the Schr6dinger equation (7) gi%s 

AO + ~-Zm [E-  Uo(x)- B 1 e k(x- b)COS k y -  B 2 e 2 k ( x -  b) COS 2 k y -  ...]~ = 0 

or more briefly 
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with 

~q,+ o2M(x, y)O --- o ; 
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(91 

Uo(x) B1 R~ 
M(x, y) = 1 E E ek(x-b)COS ky - - -  e 2k(x-b) cos 2ky-. . .  

Herewith we have reached the equation which will hold our attention. 

2. Expansion with respect to the large parameter a. 
We assume 

0y 2 >> ~ , (see appendixA) 

making Schr6dinger's equation dependent only on x as variable, and disrating y to parameter: 

d2~, 
dx 2 + a2M( x,y)O = 0.  (10) 

Here we need not identify M(x, y) precisely, because we consider it to be a general function 
in x and y. 

An approximate solution of (10) is obtained by applying the so-called W.K.B. method, 
starting from the separation of modulus and phase of the wave function 

0 --- A exp (iaS). 
Substitution in (10) gives 

2 2  ( _ ~ ) A x ~ a 2 M ( x , y  ) (11) a S~ - io" S~ + 2 S~ A 

If we take only factors of a 2 into account at first, ( i i)  reduces to 

s~ : M(x, y) 

resulting in fx 
S =  __ ~ y )d t ,  

with one integral boundary, necessary in order to be able to fulfil boundary conditions, still 
undefined; the + sign refers to the difference between incident and returning beam. 

Furthermore, the factor of o- in (11) yields 

S ~ + 2 ~ S x =  0 

leading to 

A-- $2 ~= cM-�88 

Herewith we know modulus and phase of the wave function up to second order terms, so that 
we are able to essemble the complete function 

c ) c ) 
~=M�88 yieXp i6 w / -~ ,y )d t  + M~(x,y)eXp - ia  ~ d t  . 

The constant c and the undefined integral boundaries are now required to fulfil certain con- 
ditions. First of all the incident beam must satisfy 

0 + = C 1  at x = O  

from which we derive 

(12) ) O+ - M~(x, 
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Then the connection between incident and returning beam at x = a, requires 
mod {•+(a)} = mod {0-(a)} 

phase{0 + (a)} = phase {~_ (a)} + ~z/2 

with a phase-shift in the point of reversal, in order to connect with the unperturbed solutions. 
The conditions are both satisfied by 

C1 ( i a f l v / ~ , y ) d t - i a f ] x / - ~ , y ) d t ) e x p ( - 2 ) .  (13) O- = M+(x ' y) exp 

However, (12) and (13) are not satisfactory in the neighbourhood of the reversal point where 
M = 0, because the modulus of 0 is unbounded there. Therefore we shall look for a solution of 
(10) remaining bounded at x = a, and overlapping and agreeing with (12) and (13) away from 
the reversal point. 

Let 

# = g(x) . w(O 
and ( a function of x 

= ~(x). 

Substituting this in Schr6dinger's equation (10) 

9(,2 d 2 w "2 ' ~' + .... dw + t 9 ~ 9~ )~-~ + (9"+9~r2M(x,Y)) w = O  (14) 

( '  means derivation to x) 
and equating the factor of dw/d( to zero 

2g'~'+g~" = O, 

we deduce the expression 

o(x) = c(~')-~ (15) 
which converts (14) into 

+ (~,)-2 + a2 u ( ~ ,  y w = o .  

Now taking 

(( ')-2M(x, y )=  - ( ,  

We find the expression for {: 

2 ~  = +_ (x -x/--x/--x/--x/--x/~ ' y)dt 
3 

(16) 

and the one for g(x), after inserting (16) into (15): 

g(x)-- ( 
- M(x, y) ] " 

Equation (14) now reduces to 

d2Wd~ ~ _( g" _ ~ ) + ~ a - ~  ~ , v = 0  

which is satisfied by 
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dwo ~. w(~)= Wo(~) + ~ a -2" a.(~)Wo(~)+b.(~) 
n = l  

where w= w0(~ ) satisfies the differential equation 

dZw 
d~ 2 a2~w = 0 (17) 

and a, and b, can be found by successive approximations in orders of a. (see D. S. Jones [4], 
pages 355-356). 
If we restrict our attention to the first term of the series 

our solution is an Airy function, as (17) shows. 
Again Bi{. . .}  is not satisfactory (exponential increase in region III), consequently 

w(() = c Ai{G}~} .  

To sum up, the wave function is expressed by 

( ~ )~Ai{o-~} ,  (18) 
= c _ M ( x ,  y 

an expression remaining bounded around the reversal point. In order to check wheather (18) 
agrees with the W.K.B. solution, away from x = a, Ai{o -~ ~} must be expanded for large negative 
values of the argument (valid in the whole region except for a very small neighbourhood of 
x = a ) :  

= ~__ M - - ( x ,  y)a ~ cos a y)dt - - -  (see appendix B). 
7~ 2 

Taking only the incident wave, and choosing the constants in it in such a way that boundary 
condition O+(0)= C1 is fulfilled, we get 

/ f  } O+ - M+(x ' y) exp ia o x / - ~ ' - ~ d t  (19) 

where 

The reversing wave similarl); becomes 

C1 ier f~ 

and if the boundary conditions for phase and modulus at x = a are satisfied by defining the 
constants, we arrive at a formula which is in perfect agreement with eq. (13) of the W.K.B. 
method, just as (19) equals (12). 

3. Solution, expanded with respect to B1/E. 
We simplify M(x,  y) as follows 

M(x, y) = 1 Uo (x) ~ ek(x- b) COS k y ,  
E 

only using the first term of the series (8), with e = B I / E .  
We get as phase of the incident wave 

y)dt  = a t eek(t-b)cos ky dt . 
�9 f) 0 

(20) 
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If 
a - - x  

- -  >> eek(x-b)cos ky (21) 
a 

the square root may be approximated by 

fx f~(~at)-~ ~ f~ek(,_b) /a 0 ~ y ) d t  = 0 V a - t  

of which the last integral converts by integration by parts to 

f2 ek(t-b) / dt=ek(t-b)k-1 ~a@t 2 r -  ekU-b) ~/ / a a ' a dt 
V a- t ., o a - t 2k(a- t)" (22) 

In the region where (21) holds, the second term of the right-hand side of (22) is very small 
because k(a-x)~> 1. Consequently, we may write approximately 

" f :e  k(t-b)~atdt=k-l(ek(x-b)~a x e-kb), 

which changes (20) into 

f x - 2 - a ~ ( a - x \ ~ - } e  (e V/a@ ) v % y ) d t  = 3 [ \  a J 1 - ~ c o s  ky k(~-b) - e - k b  . (23) 
0 X 

Making a somewhat more rough estimation for the modulus 

M(x,y) -  += ~ , (24) 

we can combine (23) and (24), and find the complete formula for the incident wave 

( a ~  ~ 
0II  = C1 \ a ~ - ~ /  exp [-~io-a {(a ~--x)2 - 1} ] x 

expl--i~kCOSky(ek(x-b'./a -- e-kb) }. (25) \ , v a - x  
This result can be derived directly by means of the perturbation method. The returning wave 
has the same modulus function as the incident wave, and after applying a similar approximation 
of the square root, its phase becomes: 

- , y ) d t  = 

0 a 

The last integral in the right-hand term may be converted, like we did for the incident wave, into 

- (Xek(~-b) ~ -d t=-k - t ( ek (X-b ' J  a e-kb). (27) 
Jo u a-t  \ v a - x  

However the last integral but one of (26), which has the same integrand as (27) but not the same 
boundaries, must be approached differently: 

Substitution of 
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yields 

ek(t_b) a dt= -2 e  k(x-b) e -u2 du, 
0 -- t , /ka 

and replacing the large number x / ~  by oo, we get approximately 

i o - e -  u2 du = e d u ,  

~/ ka 0 

which is Poisson's integral, known to have the value �89 so that 

flek(t-b)~/aatdt=ek(a-b)~f~ff . 

Setting the integrals in (26), we obtain 

5 2 - f ?  ~ - ~ ' y ) d t = 2 a { ( ~ - ~ ) } + l } - g c o s k y e k ( a - b ) ~ +  

+ ~-~ cos ky ~ V a -  x 

and using the correct constant with respect to the connection in x = a, it follows that the 
complete returning wave is 

exp }iaa exp cos ky e k(~- b) 
\ a - x /  

• x e-kb) }exp ( - -  2 3 .  

In region I the same procedure of approximating the square root can be followed 

5 o 52 f2 M~, y)dt = dt - cos ky ek(t-b) dt = 

e COS ky(ek(X-b)--e -kb) 

leading to 

I//+=Clexp(icrx) exp{--itr~kCOSky(e-k(x-b'--e-kb)}, (28) 

and similarly we find 

t~X- = Cl exp{--ia(x--4a)} exp {--iae cos kyek(a-b)~ }x 

x exp {icr_~k COS ky(ek(~_b)_e_kb)} exp ( _  2 )" (29) 

If we examine these results, we must conclude that 

Ol+ = C1 exp (iox) (30) 

,31, 0 I- = C1 exp { -  io(x-~a)} exp - ioe cos ky e k(x-b) exp - ~- 
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are good approximations of (28) and (29), because of the extremely small value of e k(~-b) in 
region I. 

4. Probability current density 
The information about the specimen which is contained in the wave function in the form of a 
small perturbation, will become most easily observable by expressing it in the probability 
current density. Therefore we calculate ([5], [6]): 

ih( 0~* _ r a0) 
J ( x ) = ~ ~ -JX-~ 

using the formulas 

O + = C 1 M - ~ (  x , y )  exp ia dt 
0 

} ~ b _ = C 1 M - ~ ( x , y )  exp - i a  x / ~ , ~ d t  , 
P 

(p so to choose that the two formulas connect in x = a) and find 

m ~ ~ ~ d t  = c 2 

J_ (~) = = c~ 
1 

independent of the presence of a specimen perturbation. 
But in the case of the J in the y-direction, we get 

J+ (y) = c~ - -  M ~(x, y) ~y o 

C 2 ~ ~ x 
j_ (y)=  1 v ,~ M - ~ ( x , y ) ~ y ~ - j p ~ d t ~ .  (32) 

As a result of taking 

f x - V / ~ ,  y) dt = - x - ~-k cos ky  e kCx- b) 
P 

for the reversal beam in region I, (32) becomes 

gI_ (y) = C 21 V 2/~E M-* (x' Y) 2 sin ky ek(x-b) ~ 

This expression indeed elucidates the behaviour of the returning electron beam in region I in 
a very simple way, and although the formula is not obtained entirely correctly, it gives a good 
image of the actual phenomena. Moreover, it gives an indication of how the beam must have 
behaved near the reversal point, as fig. 3 shows. 

The arrows in fig. 3 (r.h.s.), representing the probability current density in the y-direction, 
show that J_ (y)=0 in y=0,  and J_ (y) is maximum in y=  nn/k. 

Similar calculations of J, by using the more correct W.K.B. and Langer's results are far 
beyond the theoretical possibilities; however, they could be done numerically. 
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Figure 3. Reflection against equipotentiat plane curved by a first order sinusoidal perturbation. 

Appendix A. 

The assumption 

Oy2 "~ ~3X2 

is still to be checked. 
Using Langer's result (18) we can deduce 

Oy 2 ~ c -M(x ,y )  Ai"{a~r 

t3x~ ~ c - m ( x ,  y) \t?x/ 

(A1) 
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which is a good approximation for a - x  sufficiently large, so that (11) converts into 

< . ( 1 2 /  

It follows from (16) that we may replace (A2) by 

o f  x / 
~y ~ , y ) d t  ~ i ~  . (13) 

Investigating 

M (x, y) = 1 U o (x) ~f (x, y) 
E 

f(x, y) standing for the series of perturbation terms, and finding that apart from x = a 

1 - U~ (x) > e f  (x, y) 
E 

we clearly see that for any arbitrary small distance from x = a, e can be chosen such that (A3) is 



The mirror electron microscope 

satisfied. However, statement (A1) is not proven around the reversal point. 
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Appendix B: Airy Functions 

The differential equation 

w "  (z)- z. w(z) = o 

possesses two linear independent solutions, called the Airy functions of the first and second 
kind, [1], [3], [4]: 

Ai(z)=2@z Il exp(zu-la-uS)du (B1) 

Bi(z) = i e x p ( - ~ i ) A i  {z exp (-3~ri)}-iexp (3~z/)Ai {z exp (3~zi)} (B2) 

hence the integration path 1 runs from u= oo �9 exp ( - ~ i )  to u=  oe �9 exp (3zni). Both these 
solutions represent a linear combination of Bessel functions of order 1/3. 

In the case of large positive values of their argument z, the Airy functions are expressed by an 
asymptotic representation 

1 A i ( z ) , , , - - - ! e x p (  2 ~- 2n~ z - - ~ z 2 )  

1 
Bi(z) ~ -~_ z -+ exp (2z-~) 

g2 

and for large negative values of z 

Ai(z) ~ 1_~ izl_ ~ c o s  Izl -~ - 

Bi(z) - - 1  Izl -+ sin (}lzl~). 
7c~- 

The behaviour of the solutions in the so-called transition region, where z has a small value, 
appears from the Taylor series of (B1) and (B2) 

-~-3-~ ~ l~.v ( ~ )  
Ai(z) = .~=o F sin {2(n+ 1)n}0~z)" 

Bi(z) = -~3-~ ~.~=o F ( n 3 1 )  l s i n Z  {Z(n+ 

or written differently 

Ai(z) = cl f (z)-  c z g (z) 
Bi(z) = ( 3  {c1 f (z) + c z g (z)}, 

hence 
1 z3 ~ 4 z 6  1 4 " 7  ~ z3" 

f(z) = 1 + ~. + . + 9.T zg+ . . . .  .=o 3"(�89 (3n)! 

2 z4 2-5z7 2"5 '8z lO+ = ~ 3,/2 ~ z 3"+1 
g(z)=z + ~. + ~ + ~ " ' "  ,=o tx,,(3n+-l)!. 

Bi(O) 3 -~ 
C~= Ai(O) - x/3 - r(2) 
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Bi(O) 3 -+ 
C 2 =  -A i ' (O)  - 4 3  - F(�89 

whereas  Ai (0) and  Ai' (0) are  the values  of  the  A i r y  funct ion and  its der ivat ive  in the t rans i t ion  

point .  
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